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Abstract. We complete a line of argument begun in an earlier paper which shows that 
avoidance of the cancellations that destroy the stability of the standard solution of the 
matrix moment problem is possible and that it leads naturally to the Lanczos method. 

1. Introduction 

In the problem of moments (Akhiezer 1976) we are given a set of numbers SO, SI, s2, . . , 
which purport to be the moments of a distribution and it is required to find this 
distribution. In the matrix moment problem, which is our concern here, the numbers 

sn = (ulIA"Iul> (1) 

where A is a real symmetric N x N matrix and u1 is some vector, are the moments of the 
distribution 
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where we have taken so = 1, as it should be if u1 is normalised in the usual way. These 
determinants are needed for the calculation of the elements of the Jacobi matrix 
associated with the given moments (1). Given the Jacobi matrix the solution of the 
moment problem follows immediately. It has been pointed out many times, however, 
that an attempted solution which starts from the moments and proceeds through the 
evaluation of the L and M is inherently unstable. The instability arises from very severe 
cancellations in the determinants which arise in turn from the properties of the 
moments themselves. In an earlier paper (Whitehead and Watt 1978 which will be 
referred to as ww) we showed that the Lanczos method, which can also be written in 
terms of the L and M, though it does not involve their evaluation, avoids these 
cancellations, and that this is the real reason for the numerical accuracy and stability of 
the method as compared with the direct use of the moments. 

Our intention in this paper is to extend the work of ww and show that if one sets out 
to evaluate the determinants L and M in such a way that all the inherent cancellations 
are avoided one is led inevitably to the Lanczos method. We use essentially the same 
methods as ww and the difference between that paper and this is mainly one of 
viewpoint, 

2. The moment decomposition theorem 

Let s, be the nth moment of the matrix A, defined as in (1). If u1, 712, .  . . , vN is a 
complete set of orthonormal vectors we have 

If we define a path as a set of n + 1 integers 1, i, j ,  . . . , q, 1 starting and finishing at 1, 
each term in (4) represents a different path and the moment is the sum over all paths of 
the products of the matrix elements associated with each step i -+ j .  We also define the 
quantity 

in which the sum is over all non-returning paths (NRP), that is, paths which do not return 
to 1 in less than n steps. We then have 

We stated this result without proof in ww because our original derivation of it was 
extremely laborious and not terribly illuminating. As so often happens, however, there 
is an almost trivial proof. Indeed, ( 5 )  follows directly by Feller’s (1968) theory of first 
returns. Feller was interested in probabilities and the classification of mutually 
exclusive events but the ideas transfer without any essential modification. 

A completely unambiguous classification of the paths occurring in (4) is achieved if 
we group together all paths which return to 1 forthe first time after exactly k ( G n )  steps. 
The contribution to s, from each such group of paths is qbviously x k s , - k  since nothing at 
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all has been said about subsequent returns to 1. Finally, we have to sum over all groups 
and ( 5 )  follows immediately. 

3. Reduction of the determinants 

It is well known that the evaluation of determinants is subject to inherent instability. In 
several fields, notably electrical engineering, techniques based on graph theory have 
been devised which avoid the cancellations that cause the trouble. These methods are 
not applicable to our problem but their existence is encouraging. In fact, we were able 
to show in ww that the n x n determinants L, and M ,  are equal to two other 
( n  - 1) x ( n  - 1) determinants whose elements are the x k  introduced in the previous 
section. Straightforward evaluation of L, and M, would involve a great many terms 
consisting, in view of ( 5 ) ,  of products of x and s which, of necessity, cancel to leave a 
small number of products of x only. 

Proceeding as in ww we shall demonstrate the reduction of L, and M,, for the case 
n = 4. The working is the same whatever the value of n, of course, but the general case is 
rather confusing when space is limited. We begin by augmenting L4 with extra rows and 
columns thus t 

Using ( 5 )  we can factorise the augmented determinant and obtain 

L4 = 

1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 x1 x2 x3 x4 

0 x1 x2 x 3  x4 x5 

x1 x 2  x3 x4 x5 x6 

X 

In the same way we have 

!- (Added in proof). One  of the referees has kindly gone to the trouble of providing a general algebraic 
derivation of equation (16) which avoids this extraordinary manoeuvre. It involves repeated row and 
column operations on the determinant. 
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which may be factorised to give 
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M4 = X 

1 

and this is as far as we went along these lines in WW. We see that the explicit elimination 
of the cancellations associated with multiple returns to state 1 has resulted in a 
reduction of the order of the determinants. To go further we must place a specific 
restriction on the xk. 

Let us suppose that the vector u2 is the only one of u2, u 3 , .  . . that has a non-zero 
matrix element of A with u1. Denoting this non-zero matrix element by b l =  
(vzIAIvI) = ( u l l A / u z ) ,  we may write 

2 (2) xk = b l S k - 2  

where 
s k - 2  (2) = ( V 2 1 A k - 2 / V 2 )  

the superscript (2) indicating that in the evaluation of sf!2 the contributions from all 
paths which go through state 1 are to be ignored since they have already been 
eliminated from (6) and (7); In general, at the ith stage of the process that we are 
illustrating we ignore paths that involve an index smaller than i. We now have 

where we have written s1 = a l .  
The new determinants Liz’ and Mi2’ may be reduced in exactly the same way using 

the moment decomposition theorem for si2’ which is obtained from (5) by attaching the 
superscript (2) to each of the quantities concerned and re-interpreting them accord- 
ingly. Next we assume that u3 is the only vector with index greater than 2 that has a 
non-zero matrix element with 02.  Continuing in this way we can reduce the deter- 
minants completely. Thus 

2 2  2 L~ = ( b ? ) 3 ( ~ 2 )  b3  
and 

M4 =L4(al+ a2 + a3 + u4)  
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where 

bi = (ui+1IA\ui) = (uiIAJui+l) and ai = (uilAlvi). 

The general results are clearly 

L, = (b:)"-- ' (b;)"-2. .  . b:-1 

M,  = L , ( a l + a z + .  . . + U , ) ? .  

4. Construction of the Jacobi matrix 

In terms of the determinants L and M the tridiagonal Jacobi matrix associated with the 
given moments is (see ww) 

ff1 P1 

J =  

with 

M; M;-1 
' Li L;-1 

f f ,  =--- and p: = L ~ + ~ L ; - ~ / L ? .  

Inserting the values of L and M from (8) these become 

01. 1 1  = a .  and p: = b?. (9) 

5. Conclusion 

In view of (9) we are led to the conclusion that the inherent cancellations in the 
determinants L and M can be circumvented only if the orthogonal vectors v l ,  0 2 ,  . . . are 
chosen so that the matrix elements of A between them are identical to the elements of 
the Jacobi matrix for the corresponding moment problem. These vectors are therefore 
identical with those generated by the Lanczos method with u l  as the starting vector. 

Finally, we note that even when the vectors are given it is necessary to evaluate the 
matrix elements 

(vi1Aiui+d = 1 uipApqUi+l,q 
P 4  

and the sums over p and q may give rise to further cancellations which may be called 
accidental because they depend on the details of the matrix A and the choice of v l .  
These accidental cancellations have consequences for the Lanczos method that have 
been studied at length by numerical analysts (Paige 1972). What we have been 
concerned with here are the cancellations that are inherent in the matrix moment 
problem itself and whose avoidance necessitates the use of the Lanczos method. 

t This result corrects equation (6) in ww which, owing to a copying error in the manuscript, omitted all the a, 
except a ,  and 
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